Inducibly decreased MITF levels do not affect proliferation and phenotype switching but reduce differentiation of melanoma cells
نویسندگان
چکیده
Melanoma arises from neural crest-derived melanocytes which reside mostly in the skin in an adult organism. Epithelial-mesenchymal transition (EMT) is a tumorigenic programme through which cells acquire mesenchymal, more pro-oncogenic phenotype. The reversible phenotype switching is an event still not completely understood in melanoma. The EMT features and increased invasiveness are associated with lower levels of the pivotal lineage identity maintaining and melanoma-specific transcription factor MITF (microphthalmia-associated transcription factor), whereas increased proliferation is linked to higher MITF levels. However, the precise role of MITF in phenotype switching is still loosely characterized. To exclude the changes occurring upstream of MITF during MITF regulation in vivo, we employed a model whereby MITF expression was inducibly regulated by shRNA in melanoma cell lines. We found that the decrease in MITF caused only moderate attenuation of proliferation of the whole cell line population. Proliferation was decreased in five of 15 isolated clones, in three of them profoundly. Reduction in MITF levels alone did not generally produce EMT-like characteristics. The stem cell marker levels also did not change appreciably, only a sharp increase in SOX2 accompanied MITF down-regulation. Oppositely, the downstream differentiation markers and the MITF transcriptional targets melastatin and tyrosinase were profoundly decreased, as well as the downstream target livin. Surprisingly, after the MITF decline, invasiveness was not appreciably affected, independently of proliferation. The results suggest that low levels of MITF may still maintain relatively high proliferation and might reflect, rather than cause, the EMT-like changes occurring in melanoma.
منابع مشابه
Interleukin-like EMT inducer regulates partial phenotype switching in MITF-low melanoma cell lines
ILEI (FAM3C) is a secreted factor that contributes to the epithelial-to-mesenchymal transition (EMT), a cell biological process that confers metastatic properties to a tumor cell. Initially, we found that ILEI mRNA is highly expressed in melanoma metastases but not in primary tumors, suggesting that ILEI contributes to the malignant properties of melanoma. While melanoma is not an epithelial ce...
متن کاملElevated expression of MITF counteracts B-RAF–stimulated melanocyte and melanoma cell proliferation
The protein kinase B-RAF is a human oncogene that is mutated in approximately 70% of human melanomas and transforms mouse melanocytes. Microphthalmia-associated transcription factor (MITF) is an important melanocyte differentiation and survival factor, but its role in melanoma is unclear. In this study, we show that MITF expression is suppressed by oncogenic B-RAF in immortalized mouse and prim...
متن کاملOncogenic BRAF Regulates Melanoma Proliferation through the Lineage Specific Factor MITF
The Microphthalmia-associated transcription factor (MITF) is an important regulator of cell-type specific functions in melanocytic cells. MITF is essential for the survival of pigmented cells, but whereas high levels of MITF drive melanocyte differentiation, lower levels are required to permit proliferation and survival of melanoma cells. MITF is phosphorylated by ERK, and this stimulates its a...
متن کاملParthenolide induces MITF-M downregulation and senescence in patient-derived MITF-Mhigh melanoma cell populations
The activity of the M isoform of microphthalmia-associated transcription factor (MITF-M) has been attributed to regulation of differentiation, proliferation, survival and senescence of melanoma cells. MITF expression was shown to be antagonized by the activation of transcription factor NF-κB. Parthenolide, an inhibitor of NF-κB, has not been yet reported to affect MITF-M expression. Our results...
متن کاملMITF and PAX3 Play Distinct Roles in Melanoma Cell Migration; Outline of a “Genetic Switch” Theory Involving MITF and PAX3 in Proliferative and Invasive Phenotypes of Melanoma
Melanoma is a very aggressive neoplasm with a propensity to undergo progression and invasion early in its evolution. The molecular pathways underpinning invasion in melanoma are now just beginning to be elucidated, but a clear understanding of the transition from non-invasive to invasive melanoma cells remains elusive. Microphthalmia-associated transcription factor (MITF), is thought to be a ce...
متن کامل